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Humanitarian Assistance and Disaster
Relief (HADR) in DARPA Lorelei

* |n disaster situations, international responders may
not speak the language of the area in distress and may
have little reliable access to local informants

— 7100+ active languages in the world -- hard to predict
which languages will be needed next
* 44 in Boko Haram area (Hausa, Kanuri) ~522 languages in all of
Nigeria
* 19in Ebola outbreak areas in Liberia, Sierra Leone, and Guinea
e 20+ Mayan languages spoken by Central American refugee
children
— Current methods require 3 years and $10M’s per language
(mostly to prepare training corpora)

* Would require $70B and 230K person-years to handle all
languages



Challenge

* How can we develop language technologies
quickly to help first responders understand
text and speech information vital to their
mission (social media, hotline msgs, news
broadcasts)?

— Triage information by urgency and sentiment/
emotion (anger, stress, fear, happiness)

— Display information in a form that relief workers
can easily understand
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Our Goal

* |dentify sentiment and emotion in written and
spoken data to share with relief workers

— Provide additional, extra-propositional meaning
* Fear and stress of victims
* Happiness at success of relief efforts
* Anger at relief workers

— Method: Develop ways to recognize and interpret
sentiment and emotion in LRLs by training on High
Resource Languages and other LRLs



Three Main Possibilities

 Can we recognhize emotions relevant to Lorelei
from labeled speech (e.g. anger, stress, fear)

e Can text-trained sentiment systems be used to
label unlabeled speech transcripts to train
sentiment recognition in speech?

* Can systems trained on emotion/sentiment in
speech of one language be used to recognize
emotion/sentiment in another?



@ Anger vs. Neutral @

* Corpus: Mandarin Affective Speech
* Language:Mandarin

— Neutral sentences (e.g. “It will rain tonight.”) and
words (e.g. “train,” “apple”)

— 5 basic emotions (neutral, anger, elation, panic,
sadness) simulated by 68 students

* Our study: Anger: 5100 vs. Neutral: 5100






Feature Extraction Using openSMILE

* Baseline features (384)

* ‘Standard’ simple low-level acoustic features
(e.g., MFCC’s; max, min and mean frame energy)

e ‘Unique’ features (e.g. slope and offset of a linear
approximation of MFCC1-12)

— Larger feature set (6552)

* More Functionals and Low-Level Descriptors



Machine Learning Results

 Random forest: (Scikit-learn)

—Train decision tree classifiers on various
sub-samples of the training set using 384
feature set

— Uses averaging to improve the predictive
accuracy and control over-fitting

 Weighted F-measure: 0.88 (0.50
baseline); P=.88; R=.88



Useful Features

Arithmetic mean and max value of MFCC[1] (mel
frequency cepstral coefficients)

The offset of linear approximation of root-mean-
square frame energy

Arithmetic mean and max value of MFCC[2]

Range, max value, quadratic error and standard
deviation of the 1st order delta coefficient of MFCC[1]

Offset of linear approximation of MFCC[1]
Arithmetic mean of root-mean-square frame energy



@ English: Stress vs. Neutral @

e Corpus: SUSAS (Speech under simulated and
actual stress)

— Neutral words (e.g. “break” or “eight”) simulated
by 9 speakers

— Stress produced doing single tracking tasks
— Stress: 630; Neutral: 631

e Classification result on random forest model:
Weighted F-measure: 0.7031 (.50 baseline); P=.
70; R=.70



Multi-labeled Semaine Corpus

Queen’s U Belfast, http://semaine-db.eu

Natural interactions in English between users and an
‘operator’ simulating a Sensitive Artificial Listener
(SAL) agent

SAL agent examples:

— ‘Do tell me all the delicious details,’

— ‘Ohh.... that would be lovely.’

— ‘What are your weaknesses?’
— ‘It's all rubbish.’




* Annotations by 6-8 raters for each conversation

— Full rating for valence, activation, power,
expectation/anticipation, intensity

— Optional rating for basic emotions: anger, happiness,
sadness, fear, contempt...

* Solid SAL part : 87 conversations, each lasting
approximately 5 minutes



Valence score
Valence score
Valence score

Valence score

Examples

. -0.8819
. 0.1125
: 0.5803

: 0.8308



Comparing Human Sentiment Labels

to Automatic Labels

e Question:

Suppose we have unlabeled speech, can we annotate
transcripts automatically with a sentiment annotation system

and use those labels for unlabeled speech instead of manual
labels?

e Method:

Segment transcripts into sentences and align with speech

Turn Semaine manual, continuous pos/neg labels into binary for
use as gold standard

Label training transcript sentences using text-trained sentiment
analyzer to label positive/negative/neutral

Build classifier from sentiment-labeled speech and compare to
classifier built using manual Semaine speech labels



English Text-based Sentiment Analysis

* Sentiment detection system (Rosenthal 2014)

* Features(lexical, syntactic):
— Dictionary of Affect and Language (DAL)
— WordNet 3.0
- Wiktionary
— POS tags
— Top 500 n-gram features

e Qutput label: positive/negative/neutral



Comparison of
Sentiment Labels vs. Valence Scores

* Examples:
— Anyway he would probably do all the wrong shopping.
* Sentiment analysis output label: Negative
* Valence score: - 0.4420
— There must be lot’s of happy things in your life.
e Sentiment analysis output label: Positive
* Valence score: 0.7451
— *And how am | going to wrap all the presents?
e Sentiment analysis output label: Neutral
* Valence score: - 0.4090
— *Life is very bad, | don’t suppose yours is any better.

e Sentiment analysis output label: Positive
e Valence score: - 0.7500



Comparison of
Sentiment Labels vs. Valence Scores

Sentiment: Positive: 1301, Negative: 978, Neutral: 1177
Distribution of sentiment labels over valence scores:

120

— Positive sentiment labels
— Negative sentiment labels

100

80|

60 -

40}

20

0
-1.0 1.0



Results of Sentiment Analysis of
Transcripts

* Manually annotated valence scores are
unbalanced:
— 2363 sentences with positive score(score >= 0)
— 1093 sentences with negative score(score < 0)

 Set ‘neutral’ threshold to 0.118
— 1728 sentences with positive/negative score

* Precision of sentiment labels using new
threshold:

— Positive label precision: 57.88%
— Negative label precision: 60.22%



Experiments:
Sentiment Labels vs. Valence Scores

* openSMILE baseline (384) feature set

* 4 speech experiments:

— Train on sentiment labels; test on sentiment labels

— *Train on sentiment labels; test on (human) valence
scores

— Train on (human) valence scores; test on sentiment
labels

— *Train on (human) valence scores; test on (human)
valence scores

e 10-fold cross validation; weighted f-measure



Experiments:
Sentiment Labels vs. Valence Scores

* Unbalanced classes in training data:
— Moving threshold score for a balanced division
— Up sampling
— Down sampling

* Machine learning algorithms: (Scikit-learn)
— Linear models: Linear regression; Ridge; Lasso
— Nearest neighbors model: KNN
— Tree model: Decision tree
— Ensemble models: Random forest; Ada Boost

e Unbalanced classes in test data:
— Evaluation: Weighted F-measure



Experiments:
Sentiment Labels vs. Valence Scores

e Baseline: Majority class (positive)

Train on Sentiment Labels SemameVaIence Scores

Test on Sentiment Valence Sentiment Valence
Labels Scores Labels Yoo ] (=1

Baseline 0.4140 0.5526 0.4140 0.5526

Random Forest 0.5425 0.6111 0.4979 0.6897

e Should improve when we add lexical features to
acoustic ones



Cross-Lingual Training

* Given a corpus of anger in English, can we
predict anger in Mandarin?

e Given a corpus of anger in Mandarin, can we
predict anger in English?

* Train on English Semaine, test on Mandarin
Affect Corpus: F1=0.56 (cf. Mand/Mand 0.88)
Train on Mandarin Affect, test on English
Semaine: F1=0.62 (cf. Eng/Eng: F1=.77)



Conclusions and Future Work

We can detect emotions like anger and stress
from labeled Mandarin and English speech
reasonably well

We can detect emotions (e.g. anger) by training
onh one language and testing on another with
performance above the baselines

We can detect manually labeled English
emotionsl speech from transcripts automatically
labeled with sentiment, also with promising
results

Future: Appen Lorelei and Babel languages
(Turkish, Mandarin,Uyghur)



— Develop text-based sentiment detectors cross-
lingually for LRL

— Detect sentiment in Appen transcripts

— Label aligned speech

— Train sentiment models on ”labeled” speech
— Deep Learning



Thank you!

Questions?



